Aluffi torsion-free ideals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

-torsion free Acts Over Monoids

In this paper firt of all we introduce a generalization of torsion freeness of acts over monoids, called -torsion freeness. Then in section 1 of results we give some general properties and in sections 2, 3 and 4 we give a characterization of monoids for which this property of their right Rees factor, cyclic and acts in general  implies some other properties, respectively.

متن کامل

On controllers of prime ideals in group algebras of torsion-free abelian groups of finite rank

Let RA be a group ring of an abelian group A and let I be an ideal of RA . We say that a subgroup B of A controls I if I = (I ∩ RB)RA. The intersection c(I) of all subgroups of A controlling I is said to be the controller of the ideal I ; c(I) is the minimal subgroup of A which controls the ideal I . The ideal I is said to be faithful if I = A ∩ (1 + I) = 1. In theorem 4 we consider some method...

متن کامل

Torsion-free Endotrivial Modules

Let G be a finite group and let T (G) be the abelian group of equivalence classes of endotrivial kG-modules, where k is an algebraically closed field of characteristic p. We investigate the torsion-free part TF (G) of the group T (G) and look for generators of TF (G). We describe three methods for obtaining generators. Each of them only gives partial answers to the question but we obtain more p...

متن کامل

-torsion free acts over monoids

in this paper firt of all we introduce a generalization of torsion freeness of acts over monoids, called -torsion freeness. then in section 1 of results we give some general properties and in sections 2, 3 and 4 we give a characterization of monoids for which this property of their right rees factor, cyclic and acts in general  implies some other properties, respectively.

متن کامل

Torsion Z-module and Torsion-free Z-module

In this article, we formalize a torsion Z-module and a torsionfree Z-module. Especially, we prove formally that finitely generated torsion-free Z-modules are finite rank free. We also formalize properties related to rank of finite rank free Z-modules. The notion of Z-module is necessary for solving lattice problems, LLL (Lenstra, Lenstra, and Lovász) base reduction algorithm [20], cryptographic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2011

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2011.09.009